China has carried out wet research <3-6> on Hunan acid ling, Xiangyang, Boluo and Hengling soils, and all of them have achieved good test results, especially the removal of iron and titanium in kaolin by vibration high gradient magnetic separation. Very good test indicators. Hunan Leiyang kaolin See Comparative test results U.S. PEM- 84 with a high gradient magnetic separator CLY500 vibration of high gradient magnetic separator, drop from iron, titanium impurities, improve the whiteness, China high gradient magnetic The machine performance is better than the United States. Since some impurities in kaolin portion of iron is present in the form of silicates, very weak magnetism, and titanium present in the form of rutile, the magnetic separation method is difficult to work, so the flow is usually accompanied by flotation, selective flocculation, etc. Other jobs to improve the quality of the product. In recent years, superconducting magnetic separators have been successfully applied to kaolin sorting, which not only reduces energy consumption, but also greatly increases the field strength, and the quality of kaolin concentrate is also higher. The Eriez superconducting magnetic separator features rapid magnetization and achieves the highest design field strength (5T) in 60 seconds with a short degaussing time, which greatly reduces the time required to flush magnetic impurities from the magnet during load cycling. Its energy consumption is low, about 80% less than conventional magnetic separator, and the processing capacity is large, up to 100t/h. The United Kingdom has tested a reciprocating spiral superconducting magnetic system that is similar in design to a conventional can magnetic magnetic filter, except that it retains the superconducting magnet in an excited state during the duty cycle without switching control. Continuous operation. The 3048mm, superconducting and high gradient magnetic separator designed by Humboldt Company of Germany has simple structure, low operation and maintenance cost and good stability. 3.2 The purpose of froth flotation flotation is to float titanium impurities from kaolin. Since the impurity particles are extremely fine, a carrier flotation process is usually employed. The carrier mineral may be calcite or silica sand (-325 mesh), and the amount of the carrier mineral is generally 10% to 20% by weight of the kaolin, and a part of the carrier may be reused. The agents used in the flotation process include: dispersant sodium silicate, pH adjuster amine hydroxide and caustic soda collector Tal oil, fatty acid and calcium petroleum sulfonate. However, flotation has many disadvantages. The hydrophobicization of the carrier requires a large amount of chemicals. The flotation process can only be effective at a lower concentration of the slurry, thereby increasing the cost of dewatering. The loaded body must be removed from the clay product as much as possible. Recycling in the product for recycling. Chemicals and carrier minerals remaining in the clay are detrimental to the final product. Cundy and Yong et al. studied a flotation process that does not require a carrier and floats anatase directly from kaolin, which is characterized by the presence of dispersants (such as sodium silicate) and pH adjusters (usually amine hydroxide). Under high conditions, the high pulp concentration (40% to 60% solids) is scrubbed to remove surface dirt. At the same time, the scrubbing also disintegrates the anatase and hematite from the kaolin minerals, and then traps a small amount of activators and fatty acids. The slurry is added together with the slurry, and the anatase covered by the collector forms a selective agglomeration under high shear stirring conditions, so that the particle size is significantly increased, and the slurry after high shear stirring and slurry is diluted to 15%~ Flotation is carried out with 20% solids, and alum in kaolin can also be removed by flotation. 3.3 Selective coagulation/flocculation At pH 8~11, selective agglomeration of iron-titanium impurities can be observed by adding alkaline earth metal ions such as Ca2+ and Mg2+ to the kaolin slurry, and then selective flocculation is carried out with a weak anionic polyelectrolyte. The process requires that the slurry concentration be less than 20%, so there must be a large amount of water to be removed in the subsequent operations, and the residual flocculant also has an impact on the quality of the final product. Selective flocculation of kaolin with high-molecular flocculant, the kaolin particles flocculate to the bottom, and the iron-titanium impurities are reddish brown in the suspension in the upper part due to the fine particles, and the upper suspension can be removed. Most of the iron-titanium impurities are removed and processed by other operations (such as magnetic separation) to obtain high-quality kaolin. Suzhou Kaolin Company has achieved good indicators by adopting a new process of selective flocculation.
The use of selective flocculation and high gradient magnetic separation to treat kaolin also obtained satisfactory indicators. 3.4 Leaching and leaching is carried out in the presence of a weakly acidic solution (pH 3 to 4) with a reducing agent (NaS2O4) to keep the dissolved iron in the Fe2+ state, avoiding the formation of Fe(OH)3, and washing it with water to separate it from the kaolin. In order to remove the dark organic matter, it can be bleached with a strong oxidizing agent (hydrogen peroxide, sodium hypochlorite, etc.), and the Suzhou Kaolin Company has obtained high-quality kaolin products by oxidative bleaching. It has been reported that treatment of kaolin with microorganisms can significantly improve the quality of the product. 3.5 The clay after dehydration is stored in the slurry tank for 6-8 hours, and the pH is adjusted to 3-4, which is close to the zero point of the clay, so the clay particles are easily agglomerated. The addition of alum to the pulp contributes to the agglomeration of the clay particles and promotes dehydration. The cylinder filter is a commonly used dewatering device which increases the slurry concentration to 55% to 60%. One of the important functions of the filtration operation is to remove chemicals from the clay. To enhance this work, water spray is often used. Spray drying has become a very effective process in the clay industry, but it is expensive. In recent years, a new filtration process utilizing the electrophoretic properties of charged particles in an electric field has emerged. The kaolin particles are negatively charged at pH > 3 and are surrounded by an oppositely charged ion mist to form an electric double layer. In the electric field, the clay particles move toward the anode, and the counter ions in the ion mist move toward the cathode. When the particles reach the anode, they are used to protect the filter cake formed on the anode film of the electrode. The anode filter cake is further dehydrated by electroosmosis, and the excess water is pumped through the negatively charged filter cake capillary by the electroosmotic principle. The dehydrating agent is used to agglomerate the kaolin particles into large particles, which can accelerate the precipitation rate of the particles, facilitate the dehydration, and reduce the kaolin loss of the fine particles. Therefore, the development of the new high-efficiency dehydrating agent for kaolin is also one of its research directions.
4 Characteristics of kaolin mineral processing technology The kaolin mineral processing technology in various countries has the following characteristics: 1 Raw ore mined from the mine is coarsely selected in situ, and a large amount of tailings is discarded in the mine, which not only solves the filling of the goaf, but also reduces the concentrator. For the storage and transportation of raw ore, only the selected plants are set up, and the concentrates of the roughing plants are selected. 2 The pipelines are generally used between the mines and the selected plants. Since 1939, the kaolin slurry has been transported by pipelines; High-concentration pulping, dispersing agent in the slurry during the sorting process, flocculating agent in the dehydration process, filter press or vacuum filter product can be sold as a product without drying; 4 in addition to the hydrocyclone classification, the beneficiation operation also Use centrifugal classifier, sand mill, high gradient magnetic separator, flotation machine to improve product fineness and reduce impurities such as iron, titanium, sulfur; 5 chemical bleaching process for major kaolin producing countries such as the United States, Britain, and the former Soviet Union It is commonly used to produce high-whiteness kaolin products, but its cost is high; 6 Gaoling products are sold in bulk, coarse powder, fine powder and paste form. The manufacturer supplies different products according to the requirements of the users. There are many types of drying equipment for the products, but the most applications are spray drying, because the cost is relatively low. 7 The concentrating plant not only has large production capacity, but also has many varieties and is standardized products. Can meet the needs of different users. China Kaolin Company has four major categories and 34 varieties. These products are widely used in paper fillers and coatings, ceramic industry raw materials, rubber and plastic fillers and reinforcing agents, white cement oil felts, roofing coatings and waterproofing agents, glass fiber ingredients, ink pigments, cosmetics and soaps. Fillers, carriers of pesticides and fertilizers, binders for abrasive materials, synthetic molecular sieves, petroleum catalysts, atomic energy reactors, etc. 5 Conclusion 1 The carrier flotation process makes it possible to select fine-grained kaolin. The advantage is that the kinetic energy of the particles is increased, but the consumption of the agent is high, and the use and processing cost of the carrier mineral is further increased. 2 The activation of polyvalent cations without a carrier can also cause anatase to float, but the consumption of fatty acid-matched collectors is higher than that of other industrial minerals, which may be due to the large surface area of ​​the particles. 3 High shear agitation plays a two-fold role in the flotation. One is to dissociate the anatase from the kaolinite, and the other is to induce shear flocculation between the anatase particles covered by the collector. 4 High-gradient magnetic separation technology has greatly changed the surface of the kaolin industry. Especially the vibration high-gradient magnetic separation can effectively remove the iron-titanium impurities in kaolin, but has little effect on the particle size composition and physical and chemical properties of the product. Produce high quality kaolin products. Dry high gradient magnetic separation treatment of hard kaolin can eliminate product dehydration and reduce product loss, which is suitable for dry and water-free areas. The superconducting high gradient magnetic separator has low energy consumption and large processing capacity. The product purity is high and will be widely used in the kaolin industry. 5 oxidative bleaching and microbial treatment of kaolin products can greatly improve product quality. 6 electrophoresis / electroosmosis dehydration process to increase the slurry concentration to about 70%, and the production cost is much lower than spray drying. The combination of 7 kinds of operations and the final product are the main features of the kaolin dressing process.
Twin Wheel Caster,Caster Wheels,Twin Caster Wheels,Twin Wheel Caster
Yangjiang Xingyang Industry & Trade Co.,Ltd. , https://www.xycaster.com